Seed magnetic fields in turbulent small-scale dynamos
نویسندگان
چکیده
منابع مشابه
Hyperdiffusion in nonlinear large- and small-scale turbulent dynamos.
The generation of large-scale magnetic fields is generically accompanied by the more rapid growth of small-scale fields. The growing Lorentz force due to these fields backreacts on the turbulence to saturate the mean-field and small-scale dynamos. For the mean-field dynamo, in a quasilinear treatment of this saturation, it is generally thought that, while the alpha effect gets renormalized and ...
متن کاملModeling of small-scale turbulent magnetic fields on the Sun
Magnetic field generation is a key problem in understanding solar variability across a wide range of scales. Modern high-resolution observations of the global magnetic field distribution, such as from HMI/SDO (Scherrer et al. 2012), and magnetic fields in selected areas by NST/BBSO (Goode et al. 2010), SOT/Hinode (Tsuneta et al. 2008) and IMAX/SUNRISE (Solanki et al. 2010) demonstrate the compl...
متن کاملTurbulent Dynamos and Magnetic Helicity
It is shown that the turbulent dynamo -e ect converts magnetic helicity from the turbulent eld to the mean eld when the turbulence is electromagnetic while the magnetic helicity of the meaneld is transported across space when the turbulence is electrostatic or due to the electron diamagnetic e ect. In all cases, however, the dynamo e ect strictly conserves the total helicity except for a batter...
متن کاملTurbulent dynamos with advective magnetic helicity flux
Many astrophysical bodies harbour magnetic fields that are thought to be sustained by a dynamo process. However, it has been argued that the production of large-scale magnetic fields by meanfield dynamo action is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic fields ...
متن کاملCurrent Status of Turbulent Dynamo Theory From Large-Scale to Small-Scale Dynamos
Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2020
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/staa2978